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We investigate the gains obtained by using GRID, an innovative web-based technology
for parallel computing, in a Risk Management application. We show, by estimating a
parametric Value at Risk, how GRID computing offers an opportunity to enhance the
solution of computationally demanding problems with decentralized data retrieval. Fur-
thermore, we also provide an analysis of the risk factors in the US market, by empirically
testing, on the Fama and French database, a classic one factor model augmented with a
time varying specification of beta.
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1. Introduction

The estimation and management of systematic risk has been one of the most studied
topics in empirical finance. When analyzing risk in financial markets, the researchers
face a serious trade-off between empirical accuracy and economic rigor. Currently,
important research efforts are directed toward the development of advanced statis-
tical methods to best fit the behavior of financial time series. At the other end of the
research spectrum, some authors propose simple market models that convey strong
economic background but are hardly successful in the empirical implementation.

With respect to the latter approach, standard OLS estimation of market model
sensitivities produces a beta that is supposed to be constant, but there is no
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evidence of such statistical property. Indeed, time varying betas were studied by
many authors.

In one of the earliest papers investigating the time series properties of risk sensi-
tivities, Blume [4] found some evidence of mean reversion in the beta. In a following
empirical work, Blume [5] showed stationarity for portfolios’ betas and unstable
behavior for single stocks’ betas. In an explanation of these findings, the author
claims that firms may tend to undertake riskier projects at the beginning of their
life, leading to the founded mean reversion nature of beta for single stocks. Follow-
ing these papers, Brenner and Smidt [10] proposed a non-stationary model, where
the risk sensitivity of a stock is related with the value of the stock itself, showing
further evidence of the time varying nature of betas. Furthermore, in an empirical
work, Francis [21] provided an analysis, on a decade of CRSP data, confirming these
findings.1 On the other hand, some authors (e.g., Fabozzi and Francis [17] and Bos
and Newbold [8]) show compelling evidence of time varying systematic risk due to
micro and macro factors.

The introduction of more sophisticated econometric techniques in the financial
literature also influenced the empirical research on risk sensitivities. In particular,
following the seminal contributions by Engle [16] and Bollerslev [6] on modeling
heteroskedasticity in time series, GARCH techniques are applied for modeling time
varying risk sensitivities. In this strand of literature, Bollerslev et al. [7] apply a
GARCH model to estimate a conditional CAPM model with the assumption of
heteroskedasticity in the covariance between risky assets and market portfolios.
By testing their assumption on the US market, the authors find strong support
for their hypothesis of a time varying covariance matrix for assets’ returns. In the
same fashion, a Multivariate GARCH application to model time varying betas is
developed in Braun et al. [9].2 Alternatively, Schwert and Seguin [39] proposed and
estimated a single factor model of portfolio returns heteroskedasticity: to estimate
time varying monthly variances for size-ranked portfolios, they use predictions of
aggregate stock return variances from daily data.

Most of the above studies have focused on the empirical test of stochastic nature
of betas regardless of the “type” of the stock/portfolio investigated. The first step in
this direction is in Ghysels [22], where the time varying nature of the systematic risk
for several industry portfolios is investigated. Following this paper, Groenewold and
Fraser [25] applied a Kalman filter estimation to Australian industry portfolios, and
argued that industrial sectors are divided into two classes, one with time varying

1Further, evidence on the US market is presented in Sunder [41], where the null hypothesis of
market risk stationarity is tested against a random walk specification, and in Ohlson and Rosenberg
[32], where an ARMR(1,1) model is proposed and tested on an equally weighted portfolio based on
50 years of CRSP data. In a following empirical work, Collins et al. [13] confirmed the autoregressive
nature of risk sensitivities found in Ohlson and Rosenberg [32], with a detailed comparison of four
different model specifications.
2Furthermore, the time varying nature of systematic risk is confirmed on several international
markets in Giannopoulos [23].
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risk sensitivities and the other one with relatively stable behavior.3 A Kalman filter
estimation is also performed by Black et al. [3] to analyze the performance of UK
Unit trusts in the 1980s.

Our paper is closely related with the presented empirical literature on the estima-
tion of time varying risk sensitivities, and it is making a step toward the implications
of a time varying risk for a Risk Management application.

It is well known how the computational burden implied by Risk Management
applications, either parametric or non-parametric models, is dramatically increased
(see Jorion [28]). While the GRID computing, a new web-based technology for
parallel computing, has moved ahead the computational frontier for researchers
and practitioners in the engineering disciplines, up to now the finance community
has not exploited its advantages.

This paper aims to fill a part of this gap by investigating the use of GRID
computing in a Risk Management application, and by providing the first numeri-
cal evidence of important efficiency improvement for financial applications by using
this technology. Our main contribution is to propose a Value at Risk application
on several stock portfolios based on the estimation on a GRID computing environ-
ment, showing its potential for enhancing the solution of computationally demand-
ing problems with decentralized data retrieval. The proposed approach is based on
a time varying nature of the risk factors and is tested on the US market by using a a
Kalman filter approach augmented with a Genetic Algorithm for the log-likelihood
optimization. First, this allows us to investigate the risk sensitivity for a broad class
of portfolios as well as for a wide range of stocks with different characteristics,4 and
second, we are able to provide a detailed empirical analysis of the improvements
attainable within a GRID architecture for a Risk Management application.

The remainder of the paper is organized as follows. In Sec. 2, we present the
market model framework as a theoretical background to the empirical investigation.
Section 3 introduces the data set used in the empirical part and provides descriptive
statistics of the analyzed stock portfolios. In Sec. 4, we describe the estimation pro-
cedure and discuss the results of the empirical investigation on the US stock market.
In Sec. 5, we implement the risk management application and Sec. 6 concludes.

2. Theoretical Background

In this section we review the theoretical framework for our empirical estimation.
Starting from the Arbitrage Pricing Theory (APT) (cf. [12, 36, 38]), which models

3Interestingly enough, Groenewold and Fraser [25] run also a recursive regression and a rolling
regression on the same data, finding inconsistencies in the obtained results. To investigate these
results, Brooks et al. [11] performed a horse race amongst three different model specifications on the
same market. Based on both in-sample and out-of-sample forecast errors, they found overwhelming
support for the Kalman filter approach.
4To economize space and keep the paper readable, results on single stocks are available upon
request.
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the statistical evidence that asset payoff tends to move together, we derive a simple
market model for stock returns. Standard assumptions of APT are that markets
are competitive and frictionless and that returns are generated according to

R = a + Bf + ε (2.1)

where R is an (N × 1) vector of returns, a is the (N × 1) vector of intercepts of the
factor model, B is the (N ×N) matrix of factor sensitivities, f is the (N ×1) vector
of factors, and ε is the (N ×1) vector of disturbances, with ε ∼ N(0, Σ) Σ diagonal.

If a risk free asset exists and adopted factors are traded portfolios, exact factor
pricing holds. Throughout the paper we assume that a risk free asset is traded and
that the market portfolio is the pricing factor. Therefore, the pricing model can be
expressed using a market portfolio as a factor:

Re
it = βiR

e
mt + εit, (2.2)

where the superscript e indicates excess returns.
As a departure from the classical APT models we consider time varying factor

sensitivities. More specifically, we assume a mean reverting process for the beta:

βit = βi + αi(βit−1 − βi) + σiε
i
t, (2.3)

where βi is the unconditional mean of the sensitivity relative to the asset i, σi is its
conditional volatility, αi is the mean reversion parameter, and the error εi

t ∼ N(0, 1)
is i.i.d. Thus, considering both Eqs. (2.2) and (2.3), the proposed model for the asset
returns is

Re
it = βitR

e
mt + εit,

βit = βi + αi

(
βit−1 − βi

)
+ σiε

i
t.

(2.4)

3. Data

In this section we present and describe the main features of the financial series
employed in this study. Our empirical exercise is mainly based on the portfolios
formed on Size (SIZE), Earning Price (E-P), Dividend Price (D-P), and Industry
(IND) from Kenneth French’s website.

SIZE portfolios are constructed at the end of each June using the June market
equity and NYSE breakpoints. The Market Value is computed as price times shares
outstanding. The available sample period is from July 1926 to December 2004.

D-P portfolios are formed on dividend price ratios at the end of each June using
NYSE breakpoints. The dividend yield used in June of year t is the total dividends
paid from July of t − 1 to June of t per dollar of equity in June of t. The available
sample period is from July 1927 to December 2004.

E-P Portfolios are constructed with the earning price ratio at the end of each
June using NYSE breakpoints. The earnings used in June of year t are total earnings
before extraordinary items for the last fiscal year end in t − 1. The sample period
covers July 1951 to December 2004.



February 16, 2007 22:23 WSPC-104-IJTAF SPI-J071 00421

Time Varying Sensitivities on a GRID Architecture 311

Table 1. Descriptive statistics of financial series.

Qtn 1 Qtn 2 Qtn 3 Qtn 4 Qtn 5

Panel A: size portfolios
Entire sample

Mean 1.39% 1.26% 1.20% 1.12% 0.93%
Std 9.33% 7.74% 7.07% 6.34% 5.25%

Postwar sample
Mean 1.27% 1.24% 1.19% 1.16% 1.00%
Std 5.88% 5.47% 5.02% 4.72% 4.11%

Panel B: E-P portfolios∗∗
Postwar sample

Mean 0.84% 1.01% 1.10% 1.33% 1.46%
Std 4.90% 4.19% 4.23% 4.16% 4.71%

Panel C: D-P portfolios∗
Entire sample

Mean 0.96% 0.98% 0.94% 1.12% 1.10%
Std 5.98% 5.36% 5.49% 5.49% 6.11%

Postwar sample
Mean 1.04% 1.07% 1.02% 1.19% 1.17%
Std 5.07% 4.44% 4.18% 4.00% 3.88%

Manuf Utils Shops Money Other

Panel D: industry portfolios
Entire sample

Mean 1.03% 0.97% 0.96% 1.13% 0.97%
Std 5.47% 5.59% 5.75% 5.86% 6.49%

Postwar sample
Mean 1.08% 1.02% 1.02% 1.23% 1.08%
Std 4.45% 4.08% 5.27% 5.04% 4.83%

Note: This table reports the mean and the standard deviation of the analyzed stock portfolios.
The portfolios are from the Kenneth French website. All returns are monthly value weighted.
∗Sample starting July 1927.
∗∗Postwar data available from July 1951.

Finally the selected Industry portfolios are Manufacturing (SIC codes 2000-
3999), Utilities (SIC codes 4900-4999), Shops (SIC codes 5000-5999, 7000-7999),
Money and Finance (SIC codes 6000-6999), and Others.5

In order to better understand the empirical exercise, it is worth looking briefly
at the basic characteristics of the analyzed market. Table 1 presents, for each of
the analyzed portfolios, the mean and the standard deviation of the return time
series. Panel A of Table 1 presents the descriptive statistics for the SIZE based
portfolios. During the entire sample period the SIZE portfolio, based on the lowest
quintile, outperforms by 46 basis points the portfolio based on the highest quintile,
confirming the well documented size effect (see [20, 27, 40] among others). Panels

5A detailed description, along with the data, is available at http://mba.tuck.dartmouth.edu/
pages/faculty/ken.french.
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B and C of Table 1 show the descriptive statistics for the E-P and D-P based
portfolios, respectively. In these cases, the portfolios based on the highest quintile
systematically outperform the portfolios based on the lowest quintile, confirming
the well known value effect. (cf. for example, Basu [2]). Finally, Panel D, Table 1,
presents the descriptive statistics of the chosen industry portfolios. During the entire
sample the portfolios seem to have a similar volatility-return profile, except the
Money portfolios that slightly outperform the others.

4. Empirical Results

4.1. Estimation procedure

Given the unobservable nature of the risk factors, the estimation of the model
presented in Eq. (2.4) is performed using a Kalman filter, where the observation
equation and the state equation are specified as follows:

Yt = ΦtSt + Rεt,

St = A + FSt−1 + Qvt.
(4.1)

In the above state-space form, Yt is a column vector that stores the asset returns
observed at time t; Φt is a column vector of the observable risk factor (in our case the
market index), and St is a column vector of the unobservable risk factor sensitivities.
In our model specification, the unobservable variables are supposed to follow a
simple mean reverting autoregressive process. Thus, A and F are, respectively,
column vectors of the unconditional means and a [assets × assets] diagonal matrix
with the autoregressive parameters on the diagonal. Furthermore, Q and R are
diagonal matrices of the volatilities of the unobservable and the observable variables,
respectively. Finally, εt and vt are column vectors of error terms with a N(0, I)
probability distribution. To guarantee and facilitate the correct estimation of the
process parameters some restrictions are imposed. For all processes, the domain of
the diffusion terms is restricted to be positive. Once the restriction is imposed, the
Kalman filter is performed.

To implement the algorithm, we follow closely the procedure in Hamilton [26].
First, we initialize the state-vector St with its expected value:

S1|0 = A + FS0, (4.2)

where S0 contains the guessed starting values of the state variables. The associated
mean squared error (MSE, i.e., the variance covariance matrix of the initialized
state vector) can be computed as

P1|0 = FP1|0F ′ + Q′Q. (4.3)

By using the well-known result from matrix algebra, vec(ABC) = [(C′⊗A)vec(B)],
we can easily compute the MSE as

vec(P1|0) = [I − F ⊗ F ]−1vec(Q′Q). (4.4)
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The second step of the algorithm consists in forecasting the observable variables
and updating the Kalman filter. With the updates it is then possible to calculate
the new estimates for the state variable vector and its variance covariance matrix.
The forecast of the Yt vector is computed as

Yt|t−1 = ΦSt|t−1, (4.5)

with an estimation forecast error equal to:

ξt = Φ(St − St|t−1), (4.6)

and a covariance matrix of the estimation forecast error equal to:

E [ξ′tξt] = ΦPt|t−1Φ′ + R′R. (4.7)

Once we have calculated the estimation forecasts and the relative estimation errors,
we can update the Kalman filter via

St|t = St|t−1 + Pt|t−1Φ′(ΦPt|t−1Φ′ + R′R)−1ξt,

Pt|t = Pt|t−1 − Pt|t−1Φ′(ΦPt|t−1Φ′ + R′R)−1ΦPt|t−1.
(4.8)

Thus, new estimates for the state variable vector and its variance covariance matrix
can be calculated as

St+1|t = A + FSt|t,

Pt+1|t = FPt|tF ′ + Q′Q.
(4.9)

The last step of the Kalman filter procedure is to compute and maximize the log-
likelihood function. In our model the log-likelihood to be maximized is

LT =
T∑

t=1

Lt =
T∑

t=1

(
(2π)−

1
2 |ΦPt|t−1Φ′ + R′R|− 1

2 e[− 1
2 ξ′(ΦPt|t−1Φ′+R′R)−1ξ]

)
.

(4.10)

In order to maximize the expression in Eq. (4.10) we choose to implement a Genetic
Algorithm (GA) procedure. There are several features which make GA more suit-
able then other optimization algorithms for our purpose. First of all it is usually
more robust than other algorithms, and it can tolerate approximate or even noisy
design evaluation. In particular, it can operate in non-connected domains, which is
an extremely useful property for our problem. In fact, as noted above, we are maxi-
mizing a log-likelihood function, and the possibility of getting a negative argument
should be taken into account.6 Another important feature of a Genetic Algorithm is
that it can be efficiently parallelized. Therefore, it can potentially take full advan-
tage of a GRID based application. In fact, by distributing the total amount of the
calculation burden on several computation elements (CE), it is possible to reduce
the machine time as explained in detail in the next subsections.

6It is well know how any deterministic optimization method, which needs to compute the gradient
of the objective function, cannot handle such a problem.
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4.2. Genetic algorithm

Genetic algorithms are search algorithms based on the mechanics of natural selection
(see [24] for a complete reference). Following Poloni and Pediroda [34], a genetic
algorithm can be described with a pseudo-code structure such as

do ng generation

do nind individuals

translate bits into variables

compute objective

end do

do some statistics on the population individuals

do Create a new population:

by cross over:

select individuals

and reproduce

by mutation:

select individuals

and mutate

end do
end do

The key points of a GA are the operators used for selection and reproduction that
are crucial for the robustness and the efficiency of the algorithm.

In order to understand the mechanism of a GA, we illustrate in the next sub-
section some of the operators and functions used in our implementation.

4.2.1. Coding

To start the algorithm, it is necessary to define the initial population, which is any
collection of solutions that could reasonably span the whole solution space. In order
to perform this task, we generated a random sampling over that space, as explained
in Montgomery [31] and Del Vecchio [15].7 Each design variable is then coded in a
finite-length string; traditionally, GAs use binary numbers to represent such strings:
a string has a finite length, and each bit of a string can be either 0 or 1. For real
function optimization, however, it is more natural to use real numbers: the length
of the real-number string corresponds to the number of design variables (cf. [14]).
We adopted this coding technique. After the initial population is generated, the
process of selection is implemented. The selection (reproduction) operator selects
chromosomes, according to their fitness function values, to choose a new genera-
tion. In the selection procedure, the well-fitted individuals have more chances to
be selected. It is worth noting that it is not a deterministic choice: even solutions

7It is important to note that, in order to avoid local optimum solutions, the size of the population
has to be two to four times the size of variables, as noted by Rao [35].
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with a comparatively low fitness may be chosen, and they may reveal good choices
in the evolution of the algorithm (see [33]). The three selection techniques usually
used are:

Roulette wheel is the first and most popular operator. A selection probability
proportional to its fitness is assigned to each individual in the population.
The operator is robust but computationally intensive; moreover, it could
cause premature convergence if no scaling of fitness is applied.

Tournament overcomes the problem of fitness scaling, and it is considered more
efficient and robust than roulette wheel. The characteristic of a tournament
is to keep the best of a group of individuals randomly selected. In our
implementation we used this operator.

Local Geographic Selection elsewhere named as step-stone island model is a
particular case of Tournament Selection. The n-size individuals participat-
ing in the tournament are not selected randomly in the population but
through a local random walk in the neighborhoods of a particular individ-
ual, given that the population is distributed in an N -dimensional grid.

Next step in the GA is to fill up the new generation. The main way to perform this
task is through the cross-over operator. Amongst the cross-over operators the one
with the highest search robustness is the two point cross-over ; in this operator, two
points are randomly chosen, and the genetic materials (i.e., the design variables)
are exchanged between the parent variable vectors, as shown below:

A 0 0 1 0 1 1 0 1 1 1 1 0 1 1 1 0 A′

−→
B 1 1 1 1 0 1 1 0 0 0 1 1 0 1 0 1 B′

Another powerful cross-over operator has been implemented: the directional cross-
over ; it assumes that a “direction of improvement” can be detected by comparing
the fitness value of two reference individuals. The schema is shown below:

(1) for all individuals i,
(2) select individual i1, select individual i2,
(3) create the new individual as

x̄ = x̄i + S · sign(Fi − Fi1) · (x̄i − x̄i1) + T · sign(Fi − Fi2) · (x̄i − x̄i2),

where S and T are random numbers in the interval [0, 1] and F is the value of the
fitness function for the corresponding vector of variables x̄.

Finally in order to enhance population diversity, a mutation operator is per-
formed. A mutation is a random change in the genetic material of a single individ-
ual; it is applied to genes by changing them with a low probability, Pm. In our case,
a mutation means switching a bit 0 to 1 and vice versa. This operator enables the
optimization to get out of local minima.8 A mutation algorithm can be described

8An intuitive characteristic of the mutation operator is that the higher the probability of mutation
the more the search process functions like a pure random search.
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as follows:

A′ 1 1 1 0 1 1 1 0 −→ 1 1 1 0 0 1 1 0 A′′

4.3. Results

It is likely that in the close future, GRID technology will allow portfolio managers,
as well as researchers in finance, to use plenty of computational resources in order to
simulate complex models. This means that it will be possible to solve time expensive
problems by drastically reducing the initial investment on computing or storage
elements. To our knowledge, the model we proposed in this paper is the first step
toward this direction, and whether it is suitable for a real case scenario depends
on its accuracy and relative speed compared with other approaches. In this section,
therefore, we address the in-sample accuracy of the estimated risk sensitivities.

First, it is interesting to assess the capability of the employed optimization algo-
rithm. Figure 1 helps analyze the computational performance of the Genetic Algo-
rithm. It shows, in terms of the absolute value reached by the optimized likelihood
function, the gain obtained in increasing the generations size. Clearly the Genetic
Algorithm has an asymptote that is reached, in our test, at 1000 generations. The
maximum value attained for the log-likelihood function is 6581.9. It is worth noting
that, with 500 generations, the attained value is 6447.88; thus, while diminishing
the number of generations by a factor of 2 would certainly help in speeding up
the algorithm, the loss of accuracy is only of about 2%. Thus, if a practitioner
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Fig. 1. Genetic algorithm performance. This figure plots the performance, in terms of absolute
value of the obtained likelihood function, with respect to the number of simulations employed.
The GA is employed on the optimization process of a 50 stock portfolio, randomly selected, with
a time span of 33 years. All the data are from the CRSP database.
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wants to adopt our method in order to estimate time varying risk sensitivities on a
wide range of stocks portfolios by using the GRID technology, he/she knows that
he/she can reach his scope with lower resources expenditure (i.e., by booking less
computational resources).

Table 2 presents parameters’ estimation in to the selected stock portfolios. By
analyzing these results, we can draw some preliminary insight into the goodness of
fit of the proposed model. First, the model seems to be able to explain a consistent
part of the analyzed stock returns, with an R2 that ranges from 0.65 for the Money

Table 2. Parameter estimation.

Qtn 1 Qtn 2 Qtn 3 Qtn 4 Qtn 5

Panel A: size portfolios

β 1.099 1.311 1.292 1.181 0.965
(0.054) (0.041) (0.029) (0.015) (0.006)

α 0.850 0.817 0.839 0.785 0.320
(0.020) (0.031) (0.030) (0.061) (0.131)

σ 0.045 0.040 0.015 0.005 0.003
(0.003) (0.006) (0.002) (0.001) (0.001)

R2 0.667 0.818 0.902 0.949 0.985

Panel B: E-P portfolios∗∗

β 1.115 1.013 0.925 1.002 1.011
(0.025) (0.032) (0.019) (0.031) (0.031)

α 0.880 0.830 0.636 0.697 0.589
(0.045) (0.029) (0.148) (0.053) (0.108)

σ 0.003 0.015 0.011 0.037 0.051
(0.001) (0.004) (0.002) (0.007) (0.009)

R2 0.899 0.903 0.863 0.803 0.748

Panel C: D-P portfolios∗

β 0.920 0.953 0.812 0.965 0.412
(0.030) (0.021) (0.026) (0.024) (0.142)

α 0.841 0.750 0.801 0.710 0.972
(0.026) (0.032) (0.028) (0.054) (0.008)

σ 0.017 0.018 0.019 0.025 0.014
(0.003) (0.002) (0.004) (0.004) (0.003)

R2 0.916 0.928 0.895 0.869 0.830

Manuf Utils Shops Money Other

Panel D: industry portfolios

β 1.013 0.891 1.185 0.870 1.070
(0.050) (0.041) (0.047) (0.032) (0.025)

α 0.935 0.898 0.916 0.756 0.758
(0.016) (0.021) (0.015) (0.045) (0.038)

σ 0.009 0.015 0.013 0.036 0.023
(0.003) (0.007) (0.002) (0.004) (0.004)

R2 0.883 0.934 0.848 0.653 0.884

Note: This table reports the estimated parameters of the analyzed stock portfolios. The portfolios
are from the Kenneth French website. All returns are monthly value weighted.
∗Sample starting July 1927.
∗∗Data available from July 1951.
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industry portfolio to 0.98 for the highest quintile SIZE portfolio. This result is
consistent with a relevant strand of the literature, started by Jagannathan and Wang
[27]. In their paper a conditional capital asset pricing model with time varying betas
and market risk premiums is tested. Using returns on human capital and aggregate
wealth they are able to explain 57% of cross sectional stock returns variability. Some
other features of the presented panels are worth noting. In Panel A, where the SIZE
portfolios are analyzed, the explanatory power of the model is increasing in size, with
an increment of 30 percentage points in the statistics from the smallest to the biggest
portfolio. This result is well documented in literature (see for example [1, 18, 19]).
Unsurprisingly, a related pattern is followed by the estimated volatility parameters
for the SIZE portfolios: where R2 is higher, the volatility tends to be smaller within
an order of magnitude in the first quintile versus the last quintile. Similar results
can be inferred from Panels B and C, where the estimated parameters are presented
for E-P and D-P portfolios, respectively. In these cases, even if the R2 range is
narrower, the variance of the growth stock portfolios seems to be better explained
by the model. Again the same pattern for the volatility of the unobservable process
is founded. Finally, Panel D presents the results for industry based portfolios. While
the model performs well in most of the analyzed portfolios, it is worth noting its
relative lack of accuracy for the Money portfolio with respect to the other industries.

Further insights from the estimated processes can be inferred by analyzing the
parameters obtained for different portfolios. While analyzing all the estimates would
add few information for the readers, it is important to focus on selected features
that we can gather from the mean reverting parameters and the long term mean.
In particular, the High D-P portfolio (cf. Panel C, last column) displays a long
term parameter of 0.4 coupled with an high mean reverting coefficient and a rela-
tively low conditional volatility of beta9 (1.5% on an annual basis compared with
a range from 3.1% to 6% for the other quintiles). Such a result can be interpreted
as clear evidence of the less risky nature of high book to market portfolios, in
line with the previous literature (see [20]). Even clearer is the effect on the SIZE
portfolios. In fact, running the same simple calculations, we obtain an annual con-
ditional volatility of less than 1% for the beta process of the Big portfolio. This
result, coupled with a long term mean less than 1%, confirms the cited SIZE effect
(cf. [1, 18, 19]) especially when compared with the values obtained for the small
portfolio. SIZE and Book to Market effects are confirmed also by an analysis of
Fig. 2: by comparing the plots in Panel A for the SIZE portfolios and Panel C
for the D-P portfolios, it is evident how the estimated processes for the betas dis-
play patterns easily interpretable as riskier for the low Book to Market and small
portfolios, respectively.

9Conditional volatility is obtained from the unconditional estimates by simply applying σ2
cond =

σ2
uncond∗(1 − α2).
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Fig. 2. Plot of estimated process. This figure plots the estimated path of the beta processes.
Panel A through D show respectively the estimated processes from SIZE, E-P, D-P, and Industry
portfolios. For the E-P portfolios the sample size goes from July 1951 to December 2004, while for
the D-P portfolios it goes from July 1927 to December 2004. The remaining data are from July
1926 to December 2004.
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5. An Application to Risk Management

In this section we apply the estimation method proposed in Sec. 4.1 to a simple
Value a Risk (VaR) exercise. We processed our data using a GRID environment
implemented in a national facility as part of the research project EGRID. By com-
paring a VaR, based on the time varying model proposed above, with more classical
approaches we can shed some light on the relative accuracy of our approach as well
as on its gains in terms of computational time.

5.1. EGRID Project

As explained in detail by Leto et al. in [30], the EGRID project is a research project
funded by MIUR.10 The aim of the project is to investigate the role of GRID
technologies in the field of complex systems applied to economics and finance. The
MIUR evaluation committee assigned to the EGRID project a further specific task:
to implement a GRID infrastructure allowing geographically distributed scientific
communities involved in these projects to share economic and financial data as well
as applications. A preliminary version of this infrastructure was released on October
9, 2004: it is based on European Data Grid (EDG) middleware and is hosted as an
independent Virtual Organization (VO) within INFN-GRID.11

The EGRID project managed to successfully implement the facility with the
following features:

• the possibility to handle approximately 1 GB of data coming from various stock
exchanges;

• data privacy and security, i.e., the access to this resource had to be secured,
authorized, and authenticated;

• the capacity of checking availability of machines to distribute the computing load.

In the Risk Management exercise proposed in this section, we take advantage of
the GRID infrastructure, treating our application as multithread. Loosely speak-
ing, multithreading can be defined as a programming technique that enables an
application to handle more than one operation at the same time. A main applica-
tion has been created and launched in a “server machine”: this program manages
the Genetic Algorithm and constantly listens to a port for communication with
other programs running in “client machines” inside the GRID (cf. Fig. 3). Each
client application elaborates a particular configuration (a genetic individual of the
generation) as required by the server. In this setting, the most challenging task was
to make sure that multiple threads did not interfere with each other in an undesired
way. In a Risk Management setting, the VaR indicates, in percentage terms, the

10Ministero dell’Istruzione, Università e Ricerca: Italian Ministry of Education, University and
Research.
11The national computing grid infrastructure of INFN (Istituto Nazionale di Fisica Nucleare:
Italian National Institute for Nuclear Physics).
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Fig. 3. A simple representation of a multithreading application.

maximum probable loss on a given portfolio, referring to a specific confidence inter-
val and time horizon. Historically, the VaR literature has been evolved following two
main approaches: parametric and non-parametric models (see [28] for a complete
reference). In the latter class of models we can pinpoint full valuation models as His-
torical Simulation and Monte Carlo Simulation. The Historical Simulation uses past
empirical distribution of returns in order to simulate the probability distribution
of future returns. The VaR is then calculated as the chosen percentile of the simu-
lated distribution. On the contrary, Monte Carlo Simulation models are based on a
simulation of predetermined risk factors which allow the risk manager to calculate
the return distribution. Again the VaR is determined as the relevant percentile of
the obtained distribution. On the other hand, the parametric approach is based
on the estimation of a single parameter and has imbedded the simplifying assump-
tions of normal distribution of returns and linearity of portfolio returns with respect
to the considered risk factors. These two hypotheses imply a normal distribution for
portfolio returns. Consequently, it is possible to describe the returns’ distribution
simply with the first two moments, and thus, the VaR can be calculated using the
relevant percentile from a standard Z-distribution. In our empirical exercise we use
a simple parametric approach, based on the beta estimation performed in Sec. 4,
for evaluating several stock portfolios of the US market. Using the model proposed
in Eq. (2.4), it is straightforward to define the variance of a portfolio as

σ2
p = w′ββ′wσ2

m + w′Σw, (5.1)

where w indicates a column vector of assets weights, β is a column vector of the
estimated risk sensitivities, σ2

m is the variance of the market factor, and Σ is the
diagonal variance–covariance matrix of idiosyncratic disturbances. It is a well-known
result that, as the number of assets in portfolio increases, the idiosyncratic risk
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becomes negligible. Thus, for a well-diversified portfolio we can calculate the Value
a Risk as

VaR = αz

√
w′ββ′wσ2

m

√
t, (5.2)

where αz indicates the relevant percentile of the Z-distribution and t is the chosen
time horizon. The proposed VaR measure is tested on a set of equally weighted
portfolios based on the SIZE, E-P, D-P, and Industry portfolios. The betas are
estimated from the time varying sensitivities as proposed above, while the volatility
of the market is simply calculated as the historical standard deviation of the market
index returns. The chosen confidence interval is 5% one side losses, and the selected
time horizon is one month. To assess the accuracy of the calculated Value at Risk
we perform a Proportion of Failure (POF) test based on Kupiec [29], calculated as

LR = −2 ln
(

px
0(1 − p0)(n−x)

px(1 − p)(n−x)

)
, (5.3)

where p0 is the probability of an exception implied by the chosen confidence interval,
n is the sample size, x is the actual number of exception, and p is the Maximum-
Likelihood estimator x/n of p0. Basically, this test performs a Likelihood-Ratio with
5% level, based on the number of exceedences in any given sample, where the null
hypothesis is that the estimated value for the exceedences matches its exact value.
Given its definition, the test is asymptotically χ2 distributed with one degree of
freedom; thus, if the value of the test statistic exceeds the critical value of 3.84,
the Value at Risk model can be seen as not reliable with a 95% confidence level.
Table 3 shows the performance of the Value at Risk measure via a backtesting.
The obtained results are more than encouraging. In all the analyzed portfolios,
the POF statistic is well below its critical value. Thus, we do not reject the null
hypothesis of a reliable VaR measure. In order to put our results in perspective,
we estimate both the same VaR measure with more classical approaches such as an
Exponential Moving Average (EWMA) estimation of the market volatility, and a
full parametric Value at Risk following the procedure proposed by Riskmetrics.12 In
the whole sample of the analyzed portfolios, employing the EWMA volatility does
not change the accuracy of the proposed VaR measure. More importantly, for both
D-P and Industry portfolios (Panels C and D, Table 3), the VaR measure based on
the model outperforms the full parametric VaR measure.

Furthermore, Fig. 4 allows us to compare the performance of the proposed VaR
model in a time series perspective. The left column shows the actual returns with
a VaR loss band calculated with the Full Model approach while the right column
shows the loss band calculated with the Full EWMA approach. It is clear how both
approaches produce a consistent bound that would allow a risk manager to eventu-
ally correctly allocate reserve capital. Furthermore, the relative higher reaction of

12For a complete reference see http://www.riskmetrics.com.
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Table 3. Value at Risk backtesting.

Expected Actual LR test

Panel A: size portfolio
VaR Full Model 44.000 40.000 0.404
VaR EWMA Model 44.000 40.000 0.404
VaR Full EWMA 44.000 40.000 0.404

Panel B: E-P portfolio∗∗
VaR Full Model 29.000 28.000 0.040
VaR EWMA Model 29.000 27.000 0.156
VaR Full EWMA 29.000 27.000 0.156

Panel C: D-P portfolio∗
VaR Full Model 43.000 43.000 0.005
VaR EWMA Model 43.000 42.000 0.051
VaR Full EWMA 43.000 34.000 2.331

Panel D: industry portfolios
VaR Full Model 44.000 41.000 0.227
VaR EWMA Model 44.000 41.000 0.227
VaR Full EWMA 44.000 36.000 1.647

Note: This table reports the results of a Value at Risk back-
testing on the analyzed stock portfolios. The portfolios are
equally weighted based on the Kenneth French portfolios. All
returns are monthly value weighted. The decay factor chosen
for the Exponential moving average is 0.97, while its rolling
window is five years.
∗Sample starting July 1927.
∗∗Data available from July 1951.

the Full Model bound to returns’ changes can be noted, especially at the beginning
of the analyzed sample (cf. Panel A versus Panel B, and Panel G versus Panel H).

To further assess the potential of a GRID structure in solving a Risk Manage-
ment problem, we test our model on a portfolio composed of 50 stocks randomly
selected from the CRSP database. Interestingly enough, with the use of the GRID
infrastructure, we have obtained a reduction of computation time proportional, to
a certain extent, with the number of available clients. In particular, we measure the
performance of a GRID infrastructure on a cluster of eight nodes. The speed, shown
in Fig. 5, Panel A, increases dramatically when three clients are employed, gaining
193-sec with respect to a single node, with a decrease of execution time from 426 to
233-sec, corresponding to a relative increase in performance of 45.3%. Employing
five nodes gives a further improvement in the performance with a relative speed-
up of 12%. For more than five nodes, the gain becomes negligible, with an average
time of execution of 205-sec. To further investigate the performance of the employed
GRID cluster, we separate the computation time of our exercise in time employed
by the Genetic Algorithm, time employed for communication amongst nodes, and
time for Kalman filter computation. Figure 5, Panel B, shows the employed time
by the three pieces of the whole algorithm incrementally, displaying clearly where
the bottlenecks arise. First of all, the GA is not parallelized in our implementation;
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Fig. 4. Plot of Value at Risk backtesting. This figure plots the results from a Value a Risk backtest-
ing. Portfolios are equally weighted and based on the Kenneth French portfolios. All returns are
monthly value weighted. The decay factor chosen for the exponential moving average is 0.97, while
its rolling window is five years. The left column shows the actual returns with a VaR loss band
calculated with the Full Model approach while the right column shows the loss band calculated
with the Full EWMA approach. Figures are referring to Size, E-P, D-P, and Industry portfolios,
respectively.
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Fig. 5. Performance gain on a GRID architecture. This figure plots the performance of an eight
nodes, GRID cluster in performing a Risk Management application. The portfolio employed is
generated randomly by picking 50 stocks from the CRSP database, with a time span of 33 years.
Panel A shows the total computational time, while Panel B shows the time added, incrementally, to
the total computational time by the Genetic Algorithm, the communication time, and the Kalman
filter algorithm, respectively.

thus, it contributes with a constant amount of time to the entire time spent in exe-
cuting the algorithm. Second, the communication time is also contributing nearly
constantly to the total execution time, showing even a minor time increase when
the number of clients increases. Third, the execution time employed by the Kalman
filter is, as expected, gaining the most from the GRID architecture; this is mainly
due to the parallel structure of its code, i.e., taking full advantage of a distributed
computational capability. Finally, it is worth noting that the performance of the
VaR is comforting, with a POF statistics well above the 5% critical value for all the
randomly selected 50 stock portfolios.
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6. Conclusion

The estimation of systematic risk has been one of the most studied topics in empir-
ical finance. Historically, important research contributions were departing from the
classical one factor constant beta model, exploring the two possibilities of multi-
factors models and time varying sensitivities.

This paper refers to the latter stream of literature by estimating time varying
sensitivities where the betas are supposed to be unobservable. By estimating the
model via a Kalman filter augmented with a genetic optimization algorithm, we are
able to explain a large part of the observed time series variance in several stock
portfolios of the US market.

Given this estimate, we are able to calculate a Value at Risk measure, based on
the proposed model, on a GRID computing architecture. In this context, the use of
GRID computing offers an opportunity to enhance the solution of computationally
demanding problems with decentralized data retrieval.

Our analysis aims at filling a part of this gap by showing how the use of GRID
computing in a Risk Management application is well suited to and is able to provide
an important efficiency improvement for financial applications. The results are more
than promising in showing the accuracy of the proposed model coupled with the
capability of the GRID architecture in dealing, in a reasonable amount of time, with
CPU use intensive calculations and huge data retrieval queries.
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